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ABSTRACT

A new methodology for calculating high temperature and pressure elastic moduli in
metals has been developed accounting for both the electron-thermal and ion-thermal con-
tributions. Anharmonic and quasi-harmonic thermoelasticity for bcc tantalum have thereby
been calculated and compared as a function of temperature (<12,000 K) and pressure (<10
Mbar). In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for
the cold and electron-thermal contributions is closely coupled with ion-thermal contributions
obtained via multi-ion, quantum-based interatomic potentials derived from model general-
ized pseudopotential theory (MGPT). For the later contributions two separate approaches
are used. In one approach, the quasi-harmonic ion-thermal contribution is obtained through
a Brillouin zone sum of the strain derivatives of the phonons, and in the other the anhar-
monic ion-thermal contribution is obtained directly through Monte Carlo (MC) canonical
distribution averages of strain derivatives on the multi-ion potentials themselves. The result-
ing elastic moduli compare well in each method and to available ultrasonic measurements
and diamond-anvil-cell compression experiments indicating minimal anharmonic effects in
bcc tantalum over the considered pressure range.

Existing methods to calculate the thermoelastic moduli for a single crystal material
include, for example, molecular dynamics[1] and Monte Carlo techniques[2] where
only the ionic contribution is calculated, or the particle-in-a-cell method[3] where
both electronic and ionic contributions (treated only approximately) are calculated.
We present here a new methodology for calculating the high temperature and pressure
elastic moduli that separates the Helmholtz free energy into cold, electronic and
ionic contributions and makes a full calculation for each component. Two methods of
calculating the ion-thermal contributions are presented and compared: one within the
quasi-harmonic phonon approximation and the other being fully anharmonic. Both
ion-thermal treatments produce similar results in the case of Ta indicating negligible
anharmonic effects for the high pressure phase diagram for this metal.

For high temperatures (300 K ≤ T ≤ Tmelt) and pressures (P< 10 Mbar), we assume
that the electron-phonon coupling is negligible for a metal and write the Helmholtz
free energy as, F (Ω, T ) = Φo(Ω, T = 0) + Fe(Ω, T ) + FH(Ω, T ) + FA(Ω, T ), where
Φo(Ω, T = 0) is the total energy of the electronic ground state, i.e. the frozen lat-
tice, Fe(Ω, T ) contains the electron-thermal contribution, FH(Ω, T ) holds the ion-
thermal contribution, and FA(Ω, T ) has the anharmonic contributions. The specific
volume Ω is the volume per atom. With this and through the definition of the
isothermal elastic moduli CT

ijkl = Ω−1∂2F/∂ηij∂ηkl |Tη′ , where η′ indicates that all
other strains are held fixed, the individual contributions to the elastic moduli are
obtained, CT

ijkl = Co
ijkl + Ce

ijkl + Cion
ijkl . For the Ce

ijkl term, temperature is incorpo-
rated into Fe(Ω, T ) = Ue − TSe through a broadening of the electron density of



states, n(ε, Ω), via the Fermi-Dirac distribution, f(ε), and through the electronic en-
tropy, Se(Ω, T ) = −kB

∫
dε n(ε, Ω){f(ε)ln[f(ε)]− (1−f(ε))ln[1−f(ε)]} . To calculate

this term, the full-potential, linear muffin-tin orbital(FP-LMTO) electronic-structure
method is used [4].

Fig. 1: The thermal dependence of the
calculated CS

ijkl (solid line) at ambient
pressure up to Tm= 3376 K is compared
to experiment[7] (circle). The dashed
lines are from Gülseren and Cohen’s
work [3].

Fig. 2: The calculated Cijkl (line) at
T=300 K captures the pressure de-
pendence as compared to SAX-DAC
data[8](circle).

For the Cion
ijkl contribution, we have imple-

mented two different calculations to assess
the anharmonic contribution: one within the
quasi-harmonic(QH) approximation and one
that is fully anharmonic(AH). Specifically
for the QH method, following Wallace [5],
the Helmholtz free energy for the lattice is
written as a Brillouin zone and branch(κ)
sum of the phonon frequencies ωκ as Fion =∑

κ 0.5h̄ωκ + ln[1 − exp(−h̄ωκ/kT )]. There-
fore, to obtain Cion

ijkl, strain derivatives of
Fion lead to a summation over the Brillouin
zone of strain derivatives of the phonon fre-
quencies. To compute the fully AH lattice
contribution to the elastic moduli, we have
extended previous MC work[2], where the
strain derivatives of the partition function are
taken while accounting for periodic bound-
ary conditions. This leads to a canonical
assemble average of these derivatives eval-
uated at thermodynamic equilibrium for a
given Ω and T via a standard Metropolis,
MC algorithm. Two to three runs for each
Ω and T point were performed with a run
lasting at least 1.5 × 106 MC-steps. In both
ion-thermal methods, we have used a quan-
tum derived, multi-ion potential for Ta from
the model generalized pseudopotential the-
ory(MGPT) [6].

We first compare the calculated adiabatic
moduli CS

ijkl obtained from CT
ijkl(Ω, T ) with

electronic plus QH thermal contributions
against experimental data, Figs.(1 and 2).
We have found that it is necessary to include
both the electron- and ion-thermal components of the Cijkl, since each is of similar
magnitude, roughly 0.1 Mbar at T= 2500 K and P= 0. Since the electron thermal plus
QH ion-thermal calculation describe well the available experimental values, we now
compare only the computation of Cion

ijkl(Ω, T ) by the QH and AH calculations. Overall



the AH calculation yields similar values compared to the QH calculation, especially
below 1 Mbar and even near Tm. As the pressure increases, the AH calculated values
deviate from the QH values at temperatures just below Tm(see Fig. 3). At pressures
above 6 Mbar, the AH calculated values only begin to deviate from the QH calcula-
tion within 80% of the Tm. This indicates that Ta has negligible anharmonic effects
(deviation from high temperature, linear dependence) over a broad range of pressure
with temperature nearing Tm. This linear temperature dependence of the CT

ijkl leads
to linear dependence in Voigt averaged shear modulus, albeit the pressure dependence
of the cold shear modulus is non-linear above 6 Mbar.

Fig. 3: The QH (line) and AH (cir-
cle) calculations of the Cion

ijkl(Ω, T ) term
at Ω =102.2 a.u.3 for Ta. The pressure
varies from 0.5 to 0.7 Mbar nearing Tm

= 5074 K.
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